一、按概率密度函数生成样本
参照python – How to simulate from an (arbitrary) continuous probability distribution? – Stack Overflow
方法一(龟速):
from scipy import stats
import numpy as np
class norm_distribution(stats.rv_continuous):
def _pdf(self, x):
return stats.norm.pdf(x, 0, 1) #输入pdf
distribution = norm_distribution(a=-2,b=2) #设置边界缩短运行时间
randdist1=distribution.rvs(size=1000)
方法二:
def randdist(x, pdf, nvals):
"""Produce nvals random samples from pdf(x), assuming constant spacing in x."""
# get cumulative distribution from 0 to 1
cumpdf = np.cumsum(pdf)
cumpdf *= 1/cumpdf[-1]
# input random values
randv = np.random.uniform(size=nvals)
# find where random values would go
idx1 = np.searchsorted(cumpdf, randv)
# get previous value, avoiding division by zero below
idx0 = np.where(idx1==0, 0, idx1-1)
idx1[idx0==0] = 1
# do linear interpolation in x
frac1 = (randv - cumpdf[idx0]) / (cumpdf[idx1] - cumpdf[idx0])
randdist = x[idx0]*(1-frac1) + x[idx1]*frac1
return randdist
x=np.linspace(-2,2,1000)
y=stats.norm.pdf(x, 0, 1)#输入pdf
randdist2=randdist(x, y, 1000)
二、已知样本, 求概率密度
接上面的代码,
from scipy.stats import gaussian_kde import matplotlib.pyplot as plt kde1 = gaussian_kde(randdist1) y1 = kde1(x) plt.plot(x, y1,label="stats.rv_continuous",lw=2) kde2 = gaussian_kde(randdist2) y2 = kde2(x) plt.plot(x, y2,label="interpolation",lw=2) randdist3=np.random.normal(loc=0.0, scale=1.0, size=1000) kde3 = gaussian_kde(randdist3) y3=kde3(x) plt.plot(x, y3,label="random.normal",lw=2) plt.plot(x, y,label="real",lw=2) plt.legend() plt.show()
Smilie Vote is loading.
方法二有个问题,
x=np.linspace(-2,2,1000)
pdf=stats.norm.pdf(x, 0, 1)#输入pdf
cumpdf = np.cumsum(pdf)
由这里可以看出,cum只累加了(-2,2)的情况